Search results for "Hybrid retrieval method"

showing 1 items of 1 documents

Gaussian processes retrieval of crop traits in Google Earth Engine based on Sentinel-2 top-of-atmosphere data.

2022

The unprecedented availability of optical satellite data in cloud-based computing platforms, such as Google Earth Engine (GEE), opens new possibilities to develop crop trait retrieval models from the local to the planetary scale. Hybrid retrieval models are of interest to run in these platforms as they combine the advantages of physically-based radiative transfer models (RTM) with the flexibility of machine learning regression algorithms. Previous research with GEE primarily relied on processing bottom-of-atmosphere (BOA) reflectance data, which requires atmospheric correction. In the present study, we implemented hybrid models directly into GEE for processing Sentinel-2 (S2) Level-1C (L1C)…

sentinel-2active learning (AL)Soil ScienceGeologyUNESCO::CIENCIAS TECNOLÓGICASUncertainty estimategaussian processes (GP)google earth engineBiophysical and biochemical crop traiteuclidean distance-based diversity (EBD)top-of-atmosphere reflectancehybrid retrieval methodsHybrid retrieval methoduncertainty estimatesbiophysical and biochemical crop traitsatmosphere radiative transfer modelComputers in Earth SciencesRemote sensing of environment
researchProduct